- 12.12 使用生成器代替线程
- 问题
- 解决方案
- 讨论
12.12 使用生成器代替线程
问题
你想使用生成器(协程)替代系统线程来实现并发。这个有时又被称为用户级线程或绿色线程。
解决方案
要使用生成器实现自己的并发,你首先要对生成器函数和 yield
语句有深刻理解。yield
语句会让一个生成器挂起它的执行,这样就可以编写一个调度器,将生成器当做某种“任务”并使用任务协作切换来替换它们的执行。要演示这种思想,考虑下面两个使用简单的 yield
语句的生成器函数:
- # Two simple generator functions
- def countdown(n):
- while n > 0:
- print('T-minus', n)
- yield
- n -= 1
- print('Blastoff!')
- def countup(n):
- x = 0
- while x < n:
- print('Counting up', x)
- yield
- x += 1
这些函数在内部使用yield语句,下面是一个实现了简单任务调度器的代码:
- from collections import deque
- class TaskScheduler:
- def __init__(self):
- self._task_queue = deque()
- def new_task(self, task):
- '''
- Admit a newly started task to the scheduler
- '''
- self._task_queue.append(task)
- def run(self):
- '''
- Run until there are no more tasks
- '''
- while self._task_queue:
- task = self._task_queue.popleft()
- try:
- # Run until the next yield statement
- next(task)
- self._task_queue.append(task)
- except StopIteration:
- # Generator is no longer executing
- pass
- # Example use
- sched = TaskScheduler()
- sched.new_task(countdown(10))
- sched.new_task(countdown(5))
- sched.new_task(countup(15))
- sched.run()
TaskScheduler
类在一个循环中运行生成器集合——每个都运行到碰到yield语句为止。运行这个例子,输出如下:
- T-minus 10
- T-minus 5
- Counting up 0
- T-minus 9
- T-minus 4
- Counting up 1
- T-minus 8
- T-minus 3
- Counting up 2
- T-minus 7
- T-minus 2
- ...
到此为止,我们实际上已经实现了一个“操作系统”的最小核心部分。生成器函数就是认为,而yield语句是任务挂起的信号。调度器循环检查任务列表直到没有任务要执行为止。
实际上,你可能想要使用生成器来实现简单的并发。那么,在实现actor或网络服务器的时候你可以使用生成器来替代线程的使用。
下面的代码演示了使用生成器来实现一个不依赖线程的actor:
- from collections import deque
- class ActorScheduler:
- def __init__(self):
- self._actors = { } # Mapping of names to actors
- self._msg_queue = deque() # Message queue
- def new_actor(self, name, actor):
- '''
- Admit a newly started actor to the scheduler and give it a name
- '''
- self._msg_queue.append((actor,None))
- self._actors[name] = actor
- def send(self, name, msg):
- '''
- Send a message to a named actor
- '''
- actor = self._actors.get(name)
- if actor:
- self._msg_queue.append((actor,msg))
- def run(self):
- '''
- Run as long as there are pending messages.
- '''
- while self._msg_queue:
- actor, msg = self._msg_queue.popleft()
- try:
- actor.send(msg)
- except StopIteration:
- pass
- # Example use
- if __name__ == '__main__':
- def printer():
- while True:
- msg = yield
- print('Got:', msg)
- def counter(sched):
- while True:
- # Receive the current count
- n = yield
- if n == 0:
- break
- # Send to the printer task
- sched.send('printer', n)
- # Send the next count to the counter task (recursive)
- sched.send('counter', n-1)
- sched = ActorScheduler()
- # Create the initial actors
- sched.new_actor('printer', printer())
- sched.new_actor('counter', counter(sched))
- # Send an initial message to the counter to initiate
- sched.send('counter', 10000)
- sched.run()
完全弄懂这段代码需要更深入的学习,但是关键点在于收集消息的队列。本质上,调度器在有需要发送的消息时会一直运行着。计数生成器会给自己发送消息并在一个递归循环中结束。
下面是一个更加高级的例子,演示了使用生成器来实现一个并发网络应用程序:
- from collections import deque
- from select import select
- # This class represents a generic yield event in the scheduler
- class YieldEvent:
- def handle_yield(self, sched, task):
- pass
- def handle_resume(self, sched, task):
- pass
- # Task Scheduler
- class Scheduler:
- def __init__(self):
- self._numtasks = 0 # Total num of tasks
- self._ready = deque() # Tasks ready to run
- self._read_waiting = {} # Tasks waiting to read
- self._write_waiting = {} # Tasks waiting to write
- # Poll for I/O events and restart waiting tasks
- def _iopoll(self):
- rset,wset,eset = select(self._read_waiting,
- self._write_waiting,[])
- for r in rset:
- evt, task = self._read_waiting.pop(r)
- evt.handle_resume(self, task)
- for w in wset:
- evt, task = self._write_waiting.pop(w)
- evt.handle_resume(self, task)
- def new(self,task):
- '''
- Add a newly started task to the scheduler
- '''
- self._ready.append((task, None))
- self._numtasks += 1
- def add_ready(self, task, msg=None):
- '''
- Append an already started task to the ready queue.
- msg is what to send into the task when it resumes.
- '''
- self._ready.append((task, msg))
- # Add a task to the reading set
- def _read_wait(self, fileno, evt, task):
- self._read_waiting[fileno] = (evt, task)
- # Add a task to the write set
- def _write_wait(self, fileno, evt, task):
- self._write_waiting[fileno] = (evt, task)
- def run(self):
- '''
- Run the task scheduler until there are no tasks
- '''
- while self._numtasks:
- if not self._ready:
- self._iopoll()
- task, msg = self._ready.popleft()
- try:
- # Run the coroutine to the next yield
- r = task.send(msg)
- if isinstance(r, YieldEvent):
- r.handle_yield(self, task)
- else:
- raise RuntimeError('unrecognized yield event')
- except StopIteration:
- self._numtasks -= 1
- # Example implementation of coroutine-based socket I/O
- class ReadSocket(YieldEvent):
- def __init__(self, sock, nbytes):
- self.sock = sock
- self.nbytes = nbytes
- def handle_yield(self, sched, task):
- sched._read_wait(self.sock.fileno(), self, task)
- def handle_resume(self, sched, task):
- data = self.sock.recv(self.nbytes)
- sched.add_ready(task, data)
- class WriteSocket(YieldEvent):
- def __init__(self, sock, data):
- self.sock = sock
- self.data = data
- def handle_yield(self, sched, task):
- sched._write_wait(self.sock.fileno(), self, task)
- def handle_resume(self, sched, task):
- nsent = self.sock.send(self.data)
- sched.add_ready(task, nsent)
- class AcceptSocket(YieldEvent):
- def __init__(self, sock):
- self.sock = sock
- def handle_yield(self, sched, task):
- sched._read_wait(self.sock.fileno(), self, task)
- def handle_resume(self, sched, task):
- r = self.sock.accept()
- sched.add_ready(task, r)
- # Wrapper around a socket object for use with yield
- class Socket(object):
- def __init__(self, sock):
- self._sock = sock
- def recv(self, maxbytes):
- return ReadSocket(self._sock, maxbytes)
- def send(self, data):
- return WriteSocket(self._sock, data)
- def accept(self):
- return AcceptSocket(self._sock)
- def __getattr__(self, name):
- return getattr(self._sock, name)
- if __name__ == '__main__':
- from socket import socket, AF_INET, SOCK_STREAM
- import time
- # Example of a function involving generators. This should
- # be called using line = yield from readline(sock)
- def readline(sock):
- chars = []
- while True:
- c = yield sock.recv(1)
- if not c:
- break
- chars.append(c)
- if c == b'\n':
- break
- return b''.join(chars)
- # Echo server using generators
- class EchoServer:
- def __init__(self,addr,sched):
- self.sched = sched
- sched.new(self.server_loop(addr))
- def server_loop(self,addr):
- s = Socket(socket(AF_INET,SOCK_STREAM))
- s.bind(addr)
- s.listen(5)
- while True:
- c,a = yield s.accept()
- print('Got connection from ', a)
- self.sched.new(self.client_handler(Socket(c)))
- def client_handler(self,client):
- while True:
- line = yield from readline(client)
- if not line:
- break
- line = b'GOT:' + line
- while line:
- nsent = yield client.send(line)
- line = line[nsent:]
- client.close()
- print('Client closed')
- sched = Scheduler()
- EchoServer(('',16000),sched)
- sched.run()
这段代码有点复杂。不过,它实现了一个小型的操作系统。有一个就绪的任务队列,并且还有因I/O休眠的任务等待区域。还有很多调度器负责在就绪队列和I/O等待区域之间移动任务。
讨论
在构建基于生成器的并发框架时,通常会使用更常见的yield形式:
- def some_generator():
- ...
- result = yield data
- ...
使用这种形式的yield语句的函数通常被称为“协程”。通过调度器,yield语句在一个循环中被处理,如下:
- f = some_generator()
- # Initial result. Is None to start since nothing has been computed
- result = None
- while True:
- try:
- data = f.send(result)
- result = ... do some calculation ...
- except StopIteration:
- break
这里的逻辑稍微有点复杂。不过,被传给 send()
的值定义了在yield语句醒来时的返回值。因此,如果一个yield准备在对之前yield数据的回应中返回结果时,会在下一次 send()
操作返回。如果一个生成器函数刚开始运行,发送一个None值会让它排在第一个yield语句前面。
除了发送值外,还可以在一个生成器上面执行一个 close()
方法。它会导致在执行yield语句时抛出一个 GeneratorExit
异常,从而终止执行。如果进一步设计,一个生成器可以捕获这个异常并执行清理操作。同样还可以使用生成器的 throw()
方法在yield语句执行时生成一个任意的执行指令。一个任务调度器可利用它来在运行的生成器中处理错误。
最后一个例子中使用的 yield from
语句被用来实现协程,可以被其它生成器作为子程序或过程来调用。本质上就是将控制权透明的传输给新的函数。不像普通的生成器,一个使用 yield from
被调用的函数可以返回一个作为 yield from
语句结果的值。关于 yield from
的更多信息可以在 PEP 380 中找到。
最后,如果使用生成器编程,要提醒你的是它还是有很多缺点的。特别是,你得不到任何线程可以提供的好处。例如,如果你执行CPU依赖或I/O阻塞程序,它会将整个任务挂起知道操作完成。为了解决这个问题,你只能选择将操作委派给另外一个可以独立运行的线程或进程。另外一个限制是大部分Python库并不能很好的兼容基于生成器的线程。如果你选择这个方案,你会发现你需要自己改写很多标准库函数。作为本节提到的协程和相关技术的一个基础背景,可以查看 PEP 342和 “协程和并发的一门有趣课程”
PEP 3156 同样有一个关于使用协程的异步I/O模型。特别的,你不可能自己去实现一个底层的协程调度器。不过,关于协程的思想是很多流行库的基础,包括 gevent,greenlet,Stackless Python 以及其他类似工程。
原文:
http://python3-cookbook.readthedocs.io/zh_CN/latest/c12/p12_using_generators_as_alternative_to_threads.html