- kube-scheduler源码分析(五)之 PrioritizeNodes
- 1. 调用入口
- 2. PrioritizeNodes
- 3. EqualPriorityMap
- 4. processNode
- 5. PriorityMapFunction
- 6. PriorityReduceFunction
- 7. Summarize all scores
- 8. NewSelectorSpreadPriority
- 8.1. CalculateSpreadPriorityMap
- 8.2. CalculateSpreadPriorityReduce
- 9. 总结
- 9.1. PrioritizeNodes
- 9.2. NewSelectorSpreadPriority
- 9.2.1. CalculateSpreadPriorityMap
- 9.2.2. CalculateSpreadPriorityReduce
kube-scheduler源码分析(五)之 PrioritizeNodes
以下代码分析基于
kubernetes v1.12.0
版本。
本文主要分析优选策略
逻辑,即从预选的节点中选择出最优的节点。优选策略的具体实现函数为PrioritizeNodes
。PrioritizeNodes
最终返回是一个记录了各个节点分数的列表。
1. 调用入口
genericScheduler.Schedule
中对PrioritizeNodes
的调用过程如下:
此部分代码位于pkg/scheduler/core/generic_scheduler.go
func (g *genericScheduler) Schedule(pod *v1.Pod, nodeLister algorithm.NodeLister) (string, error) {
...
trace.Step("Prioritizing")
startPriorityEvalTime := time.Now()
// When only one node after predicate, just use it.
if len(filteredNodes) == 1 {
metrics.SchedulingAlgorithmPriorityEvaluationDuration.Observe(metrics.SinceInMicroseconds(startPriorityEvalTime))
return filteredNodes[0].Name, nil
}
metaPrioritiesInterface := g.priorityMetaProducer(pod, g.cachedNodeInfoMap)
// 执行优选逻辑的操作,返回记录各个节点分数的列表
priorityList, err := PrioritizeNodes(pod, g.cachedNodeInfoMap, metaPrioritiesInterface, g.prioritizers, filteredNodes, g.extenders)
if err != nil {
return "", err
}
metrics.SchedulingAlgorithmPriorityEvaluationDuration.Observe(metrics.SinceInMicroseconds(startPriorityEvalTime))
metrics.SchedulingLatency.WithLabelValues(metrics.PriorityEvaluation).Observe(metrics.SinceInSeconds(startPriorityEvalTime))
...
}
核心代码:
// 基于预选节点filteredNodes进一步筛选优选的节点,返回记录各个节点分数的列表
priorityList, err := PrioritizeNodes(pod, g.cachedNodeInfoMap, metaPrioritiesInterface, g.prioritizers, filteredNodes, g.extenders)
2. PrioritizeNodes
优选,从满足的节点中选择出最优的节点。PrioritizeNodes
最终返回是一个记录了各个节点分数的列表。
具体操作如下:
- PrioritizeNodes通过并行运行各个优先级函数来对节点进行优先级排序。
- 每个优先级函数会给节点打分,打分范围为0-10分。
- 0 表示优先级最低的节点,10表示优先级最高的节点。
- 每个优先级函数也有各自的权重。
- 优先级函数返回的节点分数乘以权重以获得加权分数。
- 最后组合(添加)所有分数以获得所有节点的总加权分数。
PrioritizeNodes主要流程如下:
- 如果没有设置优选函数和拓展函数,则全部节点设置相同的分数,直接返回。
- 依次给node执行map函数进行打分。
- 再对上述map函数的执行结果执行reduce函数计算最终得分。
- 最后根据不同优先级函数的权重对得分取加权平均数。
入参:
- pod
- nodeNameToInfo
- meta interface{},
- priorityConfigs
- nodes
- extenders
出参:
- HostPriorityList:记录节点分数的列表。
HostPriority
定义如下:
// HostPriority represents the priority of scheduling to a particular host, higher priority is better.
type HostPriority struct {
// Name of the host
Host string
// Score associated with the host
Score int
}
PrioritizeNodes
完整代码如下:
此部分代码位于pkg/scheduler/core/generic_scheduler.go
// PrioritizeNodes prioritizes the nodes by running the individual priority functions in parallel.
// Each priority function is expected to set a score of 0-10
// 0 is the lowest priority score (least preferred node) and 10 is the highest
// Each priority function can also have its own weight
// The node scores returned by the priority function are multiplied by the weights to get weighted scores
// All scores are finally combined (added) to get the total weighted scores of all nodes
func PrioritizeNodes(
pod *v1.Pod,
nodeNameToInfo map[string]*schedulercache.NodeInfo,
meta interface{},
priorityConfigs []algorithm.PriorityConfig,
nodes []*v1.Node,
extenders []algorithm.SchedulerExtender,
) (schedulerapi.HostPriorityList, error) {
// If no priority configs are provided, then the EqualPriority function is applied
// This is required to generate the priority list in the required format
if len(priorityConfigs) == 0 && len(extenders) == 0 {
result := make(schedulerapi.HostPriorityList, 0, len(nodes))
for i := range nodes {
hostPriority, err := EqualPriorityMap(pod, meta, nodeNameToInfo[nodes[i].Name])
if err != nil {
return nil, err
}
result = append(result, hostPriority)
}
return result, nil
}
var (
mu = sync.Mutex{}
wg = sync.WaitGroup{}
errs []error
)
appendError := func(err error) {
mu.Lock()
defer mu.Unlock()
errs = append(errs, err)
}
results := make([]schedulerapi.HostPriorityList, len(priorityConfigs), len(priorityConfigs))
for i, priorityConfig := range priorityConfigs {
if priorityConfig.Function != nil {
// DEPRECATED
wg.Add(1)
go func(index int, config algorithm.PriorityConfig) {
defer wg.Done()
var err error
results[index], err = config.Function(pod, nodeNameToInfo, nodes)
if err != nil {
appendError(err)
}
}(i, priorityConfig)
} else {
results[i] = make(schedulerapi.HostPriorityList, len(nodes))
}
}
processNode := func(index int) {
nodeInfo := nodeNameToInfo[nodes[index].Name]
var err error
for i := range priorityConfigs {
if priorityConfigs[i].Function != nil {
continue
}
results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)
if err != nil {
appendError(err)
return
}
}
}
workqueue.Parallelize(16, len(nodes), processNode)
for i, priorityConfig := range priorityConfigs {
if priorityConfig.Reduce == nil {
continue
}
wg.Add(1)
go func(index int, config algorithm.PriorityConfig) {
defer wg.Done()
if err := config.Reduce(pod, meta, nodeNameToInfo, results[index]); err != nil {
appendError(err)
}
if glog.V(10) {
for _, hostPriority := range results[index] {
glog.Infof("%v -> %v: %v, Score: (%d)", pod.Name, hostPriority.Host, config.Name, hostPriority.Score)
}
}
}(i, priorityConfig)
}
// Wait for all computations to be finished.
wg.Wait()
if len(errs) != 0 {
return schedulerapi.HostPriorityList{}, errors.NewAggregate(errs)
}
// Summarize all scores.
result := make(schedulerapi.HostPriorityList, 0, len(nodes))
for i := range nodes {
result = append(result, schedulerapi.HostPriority{Host: nodes[i].Name, Score: 0})
for j := range priorityConfigs {
result[i].Score += results[j][i].Score * priorityConfigs[j].Weight
}
}
if len(extenders) != 0 && nodes != nil {
combinedScores := make(map[string]int, len(nodeNameToInfo))
for _, extender := range extenders {
if !extender.IsInterested(pod) {
continue
}
wg.Add(1)
go func(ext algorithm.SchedulerExtender) {
defer wg.Done()
prioritizedList, weight, err := ext.Prioritize(pod, nodes)
if err != nil {
// Prioritization errors from extender can be ignored, let k8s/other extenders determine the priorities
return
}
mu.Lock()
for i := range *prioritizedList {
host, score := (*prioritizedList)[i].Host, (*prioritizedList)[i].Score
combinedScores[host] += score * weight
}
mu.Unlock()
}(extender)
}
// wait for all go routines to finish
wg.Wait()
for i := range result {
result[i].Score += combinedScores[result[i].Host]
}
}
if glog.V(10) {
for i := range result {
glog.V(10).Infof("Host %s => Score %d", result[i].Host, result[i].Score)
}
}
return result, nil
}
以下对PrioritizeNodes
分段进行分析。
3. EqualPriorityMap
如果没有提供优选函数和拓展函数,则将所有的节点设置为相同的优先级,即节点的score都为1,然后直接返回结果。(但一般情况下优选函数列表都不为空)
// If no priority configs are provided, then the EqualPriority function is applied
// This is required to generate the priority list in the required format
if len(priorityConfigs) == 0 && len(extenders) == 0 {
result := make(schedulerapi.HostPriorityList, 0, len(nodes))
for i := range nodes {
hostPriority, err := EqualPriorityMap(pod, meta, nodeNameToInfo[nodes[i].Name])
if err != nil {
return nil, err
}
result = append(result, hostPriority)
}
return result, nil
}
EqualPriorityMap具体实现如下:
// EqualPriorityMap is a prioritizer function that gives an equal weight of one to all nodes
func EqualPriorityMap(_ *v1.Pod, _ interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
node := nodeInfo.Node()
if node == nil {
return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
}
return schedulerapi.HostPriority{
Host: node.Name,
Score: 1,
}, nil
}
4. processNode
processNode
就是基于index拿出node的信息,调用之前注册的各种优选函数(此处是mapFunction
),通过优选函数对node和pod进行处理,最后返回一个记录node分数的列表result
。processNode
同样也使用workqueue.Parallelize
来进行并行处理。(processNode
类似于预选逻辑findNodesThatFit
中使用到的checkNode
的作用)
其中优选函数是通过priorityConfigs
来记录,每类优选函数包括PriorityMapFunction
和PriorityReduceFunction
两种函数。优选函数的注册部分可参考registerAlgorithmProvider。
processNode := func(index int) {
nodeInfo := nodeNameToInfo[nodes[index].Name]
var err error
for i := range priorityConfigs {
if priorityConfigs[i].Function != nil {
continue
}
results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)
if err != nil {
appendError(err)
return
}
}
}
// 并行执行processNode
workqueue.Parallelize(16, len(nodes), processNode)
priorityConfigs
定义如下:
核心属性:
- Map :PriorityMapFunction
- Reduce:PriorityReduceFunction
// PriorityConfig is a config used for a priority function.
type PriorityConfig struct {
Name string
Map PriorityMapFunction
Reduce PriorityReduceFunction
// TODO: Remove it after migrating all functions to
// Map-Reduce pattern.
Function PriorityFunction
Weight int
}
具体的优选函数处理逻辑待下文分析,本文会以NewSelectorSpreadPriority
函数为例。
5. PriorityMapFunction
PriorityMapFunction
是一个计算给定节点的每个节点结果的函数。
PriorityMapFunction
定义如下:
// PriorityMapFunction is a function that computes per-node results for a given node.
// TODO: Figure out the exact API of this method.
// TODO: Change interface{} to a specific type.
type PriorityMapFunction func(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error)
PriorityMapFunction是在processNode
中调用的,代码如下:
results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)
下文会分析NewSelectorSpreadPriority
在的map函数CalculateSpreadPriorityMap
。
6. PriorityReduceFunction
PriorityReduceFunction
是一个聚合每个节点结果并计算所有节点的最终得分的函数。
PriorityReduceFunction
定义如下:
// PriorityReduceFunction is a function that aggregated per-node results and computes
// final scores for all nodes.
// TODO: Figure out the exact API of this method.
// TODO: Change interface{} to a specific type.
type PriorityReduceFunction func(pod *v1.Pod, meta interface{}, nodeNameToInfo map[string]*schedulercache.NodeInfo, result schedulerapi.HostPriorityList) error
PrioritizeNodes中对reduce函数调用部分如下:
for i, priorityConfig := range priorityConfigs {
if priorityConfig.Reduce == nil {
continue
}
wg.Add(1)
go func(index int, config algorithm.PriorityConfig) {
defer wg.Done()
if err := config.Reduce(pod, meta, nodeNameToInfo, results[index]); err != nil {
appendError(err)
}
if glog.V(10) {
for _, hostPriority := range results[index] {
glog.Infof("%v -> %v: %v, Score: (%d)", pod.Name, hostPriority.Host, config.Name, hostPriority.Score)
}
}
}(i, priorityConfig)
}
下文会分析NewSelectorSpreadPriority
在的reduce函数CalculateSpreadPriorityReduce
。
7. Summarize all scores
先等待计算完成再计算加权平均数。
// Wait for all computations to be finished.
wg.Wait()
if len(errs) != 0 {
return schedulerapi.HostPriorityList{}, errors.NewAggregate(errs)
}
计算所有节点的加权平均数。
// Summarize all scores.
result := make(schedulerapi.HostPriorityList, 0, len(nodes))
for i := range nodes {
result = append(result, schedulerapi.HostPriority{Host: nodes[i].Name, Score: 0})
for j := range priorityConfigs {
result[i].Score += results[j][i].Score * priorityConfigs[j].Weight
}
}
当设置了拓展的计算方式,则增加拓展计算方式的加权平均数。
if len(extenders) != 0 && nodes != nil {
combinedScores := make(map[string]int, len(nodeNameToInfo))
for _, extender := range extenders {
if !extender.IsInterested(pod) {
continue
}
wg.Add(1)
go func(ext algorithm.SchedulerExtender) {
defer wg.Done()
prioritizedList, weight, err := ext.Prioritize(pod, nodes)
if err != nil {
// Prioritization errors from extender can be ignored, let k8s/other extenders determine the priorities
return
}
mu.Lock()
for i := range *prioritizedList {
host, score := (*prioritizedList)[i].Host, (*prioritizedList)[i].Score
combinedScores[host] += score * weight
}
mu.Unlock()
}(extender)
}
// wait for all go routines to finish
wg.Wait()
for i := range result {
result[i].Score += combinedScores[result[i].Host]
}
}
8. NewSelectorSpreadPriority
以下以NewSelectorSpreadPriority
这个优选函数来做分析,其他重要的优选函数待后续专门分析。
NewSelectorSpreadPriority
主要的功能是将属于相同service和rs下的pod尽量分布在不同的node上。
该函数的注册代码如下:
此部分代码位于pkg/scheduler/algorithmprovider/defaults/defaults.go
// ServiceSpreadingPriority is a priority config factory that spreads pods by minimizing
// the number of pods (belonging to the same service) on the same node.
// Register the factory so that it's available, but do not include it as part of the default priorities
// Largely replaced by "SelectorSpreadPriority", but registered for backward compatibility with 1.0
factory.RegisterPriorityConfigFactory(
"ServiceSpreadingPriority",
factory.PriorityConfigFactory{
MapReduceFunction: func(args factory.PluginFactoryArgs) (algorithm.PriorityMapFunction, algorithm.PriorityReduceFunction) {
return priorities.NewSelectorSpreadPriority(args.ServiceLister, algorithm.EmptyControllerLister{}, algorithm.EmptyReplicaSetLister{}, algorithm.EmptyStatefulSetLister{})
},
Weight: 1,
},
)
NewSelectorSpreadPriority
的具体实现如下:
此部分代码位于pkg/scheduler/algorithm/priorities/selector_spreading.go
// NewSelectorSpreadPriority creates a SelectorSpread.
func NewSelectorSpreadPriority(
serviceLister algorithm.ServiceLister,
controllerLister algorithm.ControllerLister,
replicaSetLister algorithm.ReplicaSetLister,
statefulSetLister algorithm.StatefulSetLister) (algorithm.PriorityMapFunction, algorithm.PriorityReduceFunction) {
selectorSpread := &SelectorSpread{
serviceLister: serviceLister,
controllerLister: controllerLister,
replicaSetLister: replicaSetLister,
statefulSetLister: statefulSetLister,
}
return selectorSpread.CalculateSpreadPriorityMap, selectorSpread.CalculateSpreadPriorityReduce
}
NewSelectorSpreadPriority
主要包括map和reduce两种函数,分别对应CalculateSpreadPriorityMap
,CalculateSpreadPriorityReduce
。
8.1. CalculateSpreadPriorityMap
CalculateSpreadPriorityMap
的主要作用是将相同service、RC、RS或statefulset的pod分布在不同的节点上。当调度一个pod的时候,先寻找与该pod匹配的service、RS、RC或statefulset,然后寻找与其selector匹配的已存在的pod,寻找存在这类pod最少的节点。
基本流程如下:
- 寻找与该pod对应的service、RS、RC、statefulset匹配的selector。
- 遍历当前节点的所有pod,将该节点上已存在的selector匹配到的pod的个数作为该节点的分数(此时,分数大的表示匹配到的pod越多,越不符合被调度的条件,该分数在reduce阶段会被按10分制处理成分数大的越符合被调度的条件)。
此部分代码位于pkg/scheduler/algorithm/priorities/selector_spreading.go
// CalculateSpreadPriorityMap spreads pods across hosts, considering pods
// belonging to the same service,RC,RS or StatefulSet.
// When a pod is scheduled, it looks for services, RCs,RSs and StatefulSets that match the pod,
// then finds existing pods that match those selectors.
// It favors nodes that have fewer existing matching pods.
// i.e. it pushes the scheduler towards a node where there's the smallest number of
// pods which match the same service, RC,RSs or StatefulSets selectors as the pod being scheduled.
func (s *SelectorSpread) CalculateSpreadPriorityMap(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
var selectors []labels.Selector
node := nodeInfo.Node()
if node == nil {
return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
}
priorityMeta, ok := meta.(*priorityMetadata)
if ok {
selectors = priorityMeta.podSelectors
} else {
selectors = getSelectors(pod, s.serviceLister, s.controllerLister, s.replicaSetLister, s.statefulSetLister)
}
if len(selectors) == 0 {
return schedulerapi.HostPriority{
Host: node.Name,
Score: int(0),
}, nil
}
count := int(0)
for _, nodePod := range nodeInfo.Pods() {
if pod.Namespace != nodePod.Namespace {
continue
}
// When we are replacing a failed pod, we often see the previous
// deleted version while scheduling the replacement.
// Ignore the previous deleted version for spreading purposes
// (it can still be considered for resource restrictions etc.)
if nodePod.DeletionTimestamp != nil {
glog.V(4).Infof("skipping pending-deleted pod: %s/%s", nodePod.Namespace, nodePod.Name)
continue
}
for _, selector := range selectors {
if selector.Matches(labels.Set(nodePod.ObjectMeta.Labels)) {
count++
break
}
}
}
return schedulerapi.HostPriority{
Host: node.Name,
Score: int(count),
}, nil
}
以下分段分析:
先获得selector。
selectors = getSelectors(pod, s.serviceLister, s.controllerLister, s.replicaSetLister, s.statefulSetLister)
计算节点上匹配selector的pod的个数,作为该节点分数,该分数并不是最终节点的分数,只是中间过渡的记录状态。
count := int(0)
for _, nodePod := range nodeInfo.Pods() {
...
for _, selector := range selectors {
if selector.Matches(labels.Set(nodePod.ObjectMeta.Labels)) {
count++
break
}
}
}
8.2. CalculateSpreadPriorityReduce
CalculateSpreadPriorityReduce
根据节点上现有匹配pod的数量计算每个节点的十分制的分数,具有较少现有匹配pod的节点的分数越高,表示节点越可能被调度到。
基本流程如下:
- 记录所有节点中匹配到pod个数最多的节点的分数(即匹配到的pod最多的个数)。
- 遍历所有的节点,按比例取十分制的得分,计算方式为:(节点中最多匹配pod的个数-当前节点pod的个数)/节点中最多匹配pod的个数。此时,分数越高表示该节点上匹配到的pod的个数越少,越可能被调度到,即满足把相同selector的pod分散到不同节点的需求。
此部分代码位于pkg/scheduler/algorithm/priorities/selector_spreading.go
// CalculateSpreadPriorityReduce calculates the source of each node
// based on the number of existing matching pods on the node
// where zone information is included on the nodes, it favors nodes
// in zones with fewer existing matching pods.
func (s *SelectorSpread) CalculateSpreadPriorityReduce(pod *v1.Pod, meta interface{}, nodeNameToInfo map[string]*schedulercache.NodeInfo, result schedulerapi.HostPriorityList) error {
countsByZone := make(map[string]int, 10)
maxCountByZone := int(0)
maxCountByNodeName := int(0)
for i := range result {
if result[i].Score > maxCountByNodeName {
maxCountByNodeName = result[i].Score
}
zoneID := utilnode.GetZoneKey(nodeNameToInfo[result[i].Host].Node())
if zoneID == "" {
continue
}
countsByZone[zoneID] += result[i].Score
}
for zoneID := range countsByZone {
if countsByZone[zoneID] > maxCountByZone {
maxCountByZone = countsByZone[zoneID]
}
}
haveZones := len(countsByZone) != 0
maxCountByNodeNameFloat64 := float64(maxCountByNodeName)
maxCountByZoneFloat64 := float64(maxCountByZone)
MaxPriorityFloat64 := float64(schedulerapi.MaxPriority)
for i := range result {
// initializing to the default/max node score of maxPriority
fScore := MaxPriorityFloat64
if maxCountByNodeName > 0 {
fScore = MaxPriorityFloat64 * (float64(maxCountByNodeName-result[i].Score) / maxCountByNodeNameFloat64)
}
// If there is zone information present, incorporate it
if haveZones {
zoneID := utilnode.GetZoneKey(nodeNameToInfo[result[i].Host].Node())
if zoneID != "" {
zoneScore := MaxPriorityFloat64
if maxCountByZone > 0 {
zoneScore = MaxPriorityFloat64 * (float64(maxCountByZone-countsByZone[zoneID]) / maxCountByZoneFloat64)
}
fScore = (fScore * (1.0 - zoneWeighting)) + (zoneWeighting * zoneScore)
}
}
result[i].Score = int(fScore)
if glog.V(10) {
glog.Infof(
"%v -> %v: SelectorSpreadPriority, Score: (%d)", pod.Name, result[i].Host, int(fScore),
)
}
}
return nil
}
以下分段分析:
先获取所有节点中匹配到的pod最多的个数。
for i := range result {
if result[i].Score > maxCountByNodeName {
maxCountByNodeName = result[i].Score
}
zoneID := utilnode.GetZoneKey(nodeNameToInfo[result[i].Host].Node())
if zoneID == "" {
continue
}
countsByZone[zoneID] += result[i].Score
}
遍历所有的节点,按比例取十分制的得分。
for i := range result {
// initializing to the default/max node score of maxPriority
fScore := MaxPriorityFloat64
if maxCountByNodeName > 0 {
fScore = MaxPriorityFloat64 * (float64(maxCountByNodeName-result[i].Score) / maxCountByNodeNameFloat64)
}
...
}
9. 总结
优选,从满足的节点中选择出最优的节点。PrioritizeNodes
最终返回是一个记录了各个节点分数的列表。
9.1. PrioritizeNodes
主要流程如下:
- 如果没有设置优选函数和拓展函数,则全部节点设置相同的分数,直接返回。
- 依次给node执行map函数进行打分。
- 再对上述map函数的执行结果执行reduce函数计算最终得分。
- 最后根据不同优先级函数的权重对得分取加权平均数。
其中每类优选函数会包含map函数和reduce函数两种。
9.2. NewSelectorSpreadPriority
其中以NewSelectorSpreadPriority
这个优选函数为例作分析,该函数的功能是将相同service、RS、RC或statefulset下pod尽量分散到不同的节点上。包括map函数和reduce函数两部分,具体如下。
9.2.1. CalculateSpreadPriorityMap
基本流程如下:
- 寻找与该pod对应的service、RS、RC、statefulset匹配的selector。
- 遍历当前节点的所有pod,将该节点上已存在的selector匹配到的pod的个数作为该节点的分数(此时,分数大的表示匹配到的pod越多,越不符合被调度的条件,该分数在reduce阶段会被按10分制处理成分数大的越符合被调度的条件)。
9.2.2. CalculateSpreadPriorityReduce
基本流程如下:
- 记录所有节点中匹配到pod个数最多的节点的分数(即匹配到的pod最多的个数)。
- 遍历所有的节点,按比例取十分制的得分,计算方式为:(节点中最多匹配pod的个数-当前节点pod的个数)/节点中最多匹配pod的个数。此时,分数越高表示该节点上匹配到的pod的个数越少,越可能被调度到,即满足把相同selector的pod分散到不同节点的需求。
参考:
- https://github.com/kubernetes/kubernetes/blob/v1.12.0/pkg/scheduler/core/generic_scheduler.go
- https://github.com/kubernetes/kubernetes/blob/v1.12.0/pkg/scheduler/algorithm/priorities/selector_spreading.go